Math, asked by divya4476, 1 year ago

find the area of the triangle formed by the points (p+1+1) (2p +1, 3)and (3p+2,3p) and show that the points are collinear if p=2or - 1/3 please answer fast brother and sister ☺️☺️☺️​

Answers

Answered by aquialaska
1

Answer:

Area of triangle = \frac{1}{2}\left|3p^2-5p-2\right|

Step-by-step explanation:

Given Points are say A(x_1,y_1)=(p+1,1)\:,\:B(x_2,y_2)=(2p+1,3)\:and\:C(x_3,y_3)=(3p+2,3p)

To find: Area of ΔABC

To prove: Points are collinear if p = 2 or \frac{-1}{3}

Formula used to find Area of triangle is given by,

Area\,of\,triangle=\frac{1}{2}\left|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\right|

\implies Area\,of\,\Delta ABC=\frac{1}{2}\left|(p+1)(3-3p)+(2p+1)(3p-1)+(3p+2)(1-3)\right|

Area\,of\,\Delta ABC=\frac{1}{2}\left|-3p^2+3+6p^2+p-1-6p-4\right|

Area\,of\,\Delta ABC=\frac{1}{2}\left|3p^2-5p-2\right| ....... (1)

Now first put p = 2 in eqn (1) , we get

Area\,of\,\Delta ABC=\frac{1}{2}\left|3\times2^2-5\times2-2\right|

                               =\frac{1}{2}\left|12-12\right|

                               = 0

Now, put p=\frac{-1}{3} in eqn (1)

Area\,of\,\Delta ABC=\frac{1}{2}\left|3\times(\frac{-1}{3})^2-5\times(\frac{-1}{3})-2\right|

                               =\frac{1}{2}\left|\frac{3}{9}+\frac{15}{9}-\frac{18}{9}\right|

                                = 0

Therefore, for p = 2 or  \frac{-1}{3} points are collinear. and Area of triangle =  \frac{1}{2}\left|3p^2-5p-2\right|

Similar questions