Math, asked by balajiprasathprasath, 3 months ago

find the area of the triangle formed by the points v(0,5) s(0,1) t(3,0)​

Answers

Answered by VishnuPriya2801
8

Answer:-

Given points are V (0 , 5) ; S (0 , 1) and T (3 , 0).

We know that;

Area of a triangle formed by the vertices (x₁ , y₁) ; (x₂ , y₂) and (x₃ , y₃) is:-

   \red{\sf Area _{ \Delta} =  \dfrac{1}{2}  \begin{vmatrix} \sf \: x_1 - x_2 \: &  \sf \: x_1 - x_3 \\  \\  \sf \: y_1 - y_2  & \sf \: y_1 - y_3 \end{vmatrix}}

Let;

  • x₁ = 0

  • y₁ = 5

  • x₂ = 0

  • y₂ = 1

  • x₃ = 3

  • y₃ = 0

Putting the respective values we get;

 \implies \sf  Area _{ \Delta} =  \dfrac{1}{2}  \begin{vmatrix} \sf \:  0 - 0\: &  \sf \: 0 - 3 \\  \\  \sf 5 - 1  & \sf \: 5 - 0 \end{vmatrix} \\  \\  \\ \implies \sf  Area _{ \Delta} =  \dfrac{1}{2}  \begin{vmatrix} \sf \:   0\: &  \sf \:  - 3 \\  \\  \sf 4  & \sf \: 5  \end{vmatrix} \\  \\  \\ \implies \sf  Area _{ \Delta} =  \frac{1}{2} |0 \times 5 - ( - 3)(4)|  \\  \\  \\ \implies \sf  Area _{ \Delta} = \frac{1}{2}  \times 12 \\  \\  \\ \implies  \boxed{ \red{\sf  Area _{ \Delta} =6 \: unit^{2} }}

The area of the given triangle is 6 unit².

Answered by Anonymous
88

Answer:

Given :-

  • v(0 , 5)
  • s(0 , 1)
  • t(3 , 0)

To Find :-

  • What is the area of the triangle.

Formula Used :-

 \longmapsto \sf\boxed{\bold{\pink{Area\: of\: the\: triangle =\: \dfrac{1}{2} \begin{vmatrix} \sf \: x_1 - x_2 \: & \sf x_1 - x_3 \\ \\ \sf \: y_1 - y_2 & \sf \: y_1 - y_3 \end{vmatrix}}}}

Solution :-

Let's,

\sf x_1 =\: 0

\sf x_2 =\: 0

\sf x_3 =\: 3

\sf y_1 =\: 5

\sf y_2 =\: 1

\sf y_3 =\: 0

Now, by according to the question by using the formula we,

 \mapsto \sf Area\: of\: triangle =\: \dfrac{1}{2} \begin{vmatrix} \sf \: 0 - 0 \: & \sf 0 - 3 \\ \\ \sf \: 5 - 1 & \sf 5 - 0 \end{vmatrix}\\

 \mapsto \sf Area\: of\: triangle =\: \dfrac{1}{2} \begin{vmatrix} \sf \: 0 \: & \sf -\: 3 \\ \\ \sf \: 4 & \sf 5 \end{vmatrix}\\

 \mapsto \sf Area\: of\: triangle =\: \dfrac{1}{2} \begin{vmatrix} \sf 0 \times 5 - (- 3)(4) \end{vmatrix}\\

 \mapsto \sf Area\: of\: triangle =\: \dfrac{1}{2} \begin{vmatrix} 0 - (- 3) \times 4 \end{vmatrix}\\

 \mapsto \sf Area\: of\: triangle =\: \dfrac{1}{2} \begin{vmatrix} 3 \times 4 \end{vmatrix} \\

 \mapsto \sf Area\: of\: triangle =\: \dfrac{1}{\cancel{2}} \times {\cancel{12}}\\

 \mapsto \sf Area\: of\: triangle =\: 1 \times 6\\

 \mapsto \sf\bold{\purple{Area\: of\: triangle =\: 6\: sq\: unit}}\\

\therefore The area of the triangle is 6 sq unit.

Similar questions