Math, asked by anil2789, 4 months ago

Find the area of the triangle in which a = 13m b = 14m c = 15m

Answers

Answered by Anonymous
4

Answer :

  • Area of triangle is 84m²

Given :

sides of triangle:

  • a = 13cm
  • b = 14cm
  • c = 15cm

To find :

  • Area of the triangle

Solution :

As we know that ,

  • Area of triangle = s(s - a) (s - b) (s - c)

where s is a + b + c/ 2

putting the value :

⇢ s = 13 + 14 + 15 / 2

⇢ s = 42/2

⇢ s = 21

Now we have to find the area of triangle :

  • Area of triangle = √s(s - a) (s - b) (s - c)

where s is 21 , a is 13 , b is 14 and c is 15

⇢ √21(21 - 13) (21- 14) (21 - 15) m²

⇢ √21(8) (7) (6) m²

⇢ √7056

⇢ 84m²

or

⇢ √21(21 - 13) (21- 14) (21 - 15) m²

⇢ √21(8) (7) (6) m²

⇢ √7 × 3 × 2 × 4 × 7 × 2 × 3 m²

⇢ √7² × 3² × 2² × 2² m²

⇢ 7 × 3 × 2 × 2 m²

⇢ 84m²

Hence, Area of triangle is 84m²

Answered by TheWonderWall
3

\dag\:\underline{\sf Given \::}

  • \sf\:a=13\:m

  • \sf\:b=14\:m

  • \sf\:c=15\:m

\dag\:\underline{\sf To\:find\::}

  • \sf\:Area\:of\:the\:triangle

\dag\:\underline{\sf Solution\::}

We know,

\large{\underline{\boxed{\mathrm\pink{Semi perimeter=(\frac{a+b+c}{2})}}}}

\sf\:Semi-perimeter=\frac{a+b+c}{2}

\sf\:=\frac{13+14+15}{2}

\sf\:=\frac{42}{2}

\sf\:=21\:m

Now by Heron's formula :

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎

\sf\:Area\: of \:triangle :\sqrt{s(s - a)(s - b)(s - c)}m^{2}

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎

‎‎\sf\: =\sqrt{21(21 - 13)(21 - 14)(21 - 15)}\:m^{2}

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎

\sf\:=\sqrt{21(8)(7)(6)}\:m^{2}

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎

\sf\: =\sqrt{21\times 8 \times 7 \times 6}\:m^{2}

‎ ‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎ ‎ ‎ ‎‎‎‎‎‎ ‎‎‎

\sf\: =\sqrt{7056}\:m^{2}

‎‎‎‎\sf\:=84\:m^{2}

  • Thnku :)
Similar questions