Math, asked by banus6152, 4 months ago

find the area of the triangle using heron's formula for the given sides 8 cm 5 cm and 13 cm​

Answers

Answered by EliteZeal
6

\underline{\underline{\huge{\gray{\tt{\textbf Answer :- }}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Sides of triangle are - 8cm , 5cm , 13cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of triangle using herons formula

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that ,

 \:\:

: ➜ \sf \sqrt {s(s - a)(s - b)(s - c) } ----------- (1)

 \:\:

Where,

 \:\:

  • a = First side

  • b = Second side

  • c = Third side

  • s = Semi perimeter = \sf \dfrac {a + b + c }{2 }

 \:\:

Given in the question

 \:\:

  • a = 8 cm

  • b = 5 cm

  • c = 13 cm

  • s = \sf \dfrac {8 + 5 + 13 }{2 } = \dfrac {26 }{2 } = 13

 \:\:

Putting the above values in (1)

 \:\:

: ➜ \sf \sqrt {13(13 - 8)(13 - 5)(13 - 13) }

 \:\:

: ➜ \sf \sqrt {13(5)(8)(0) }

 \:\:

: : ➨ 0

 \:\:

  • Hence the area of given triangle is 0 sq. cm i.e the triangle is not possible
Answered by Ranveerx107
1

\underline{\underline{\huge{\gray{\tt{\textbf Answer :- }}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Sides of triangle are - 8cm , 5cm , 13cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of triangle using herons formula

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that ,

 \:\:

: ➜ \sf \sqrt {s(s - a)(s - b)(s - c) } ----------- (1)

 \:\:

Where,

 \:\:

a = First side

b = Second side

c = Third side

s = Semi perimeter = \sf \dfrac {a + b + c }{2 }

 \:\:

Given in the question

 \:\:

a = 8 cm

b = 5 cm

c = 13 cm

s = \sf \dfrac {8 + 5 + 13 }{2 } = \dfrac {26 }{2 } = 13

 \:\:

Putting the above values in (1)

 \:\:

: ➜ \sf \sqrt {13(13 - 8)(13 - 5)(13 - 13) }

 \:\:

: ➜ \sf \sqrt {13(5)(8)(0) }

 \:\:

: : ➨ 0

 \:\:

Hence the area of given triangle is 0 sq. cm i.e the triangle is not possible

Similar questions