Math, asked by mehakpreetkaur572, 1 month ago

find the area of the triangle who's vertices are (5,0) , (0,3) , (0,-4)​

Answers

Answered by SachinGupta01
9

\bf \underline{ \underline{\maltese\:Given} }

 \sf  \Rrightarrow Vertices  \: of  \: triangle \:  are \:  (5,0)  , \:  (0,3) ,  \: (0,-4)

\bf \underline{ \underline{\maltese \: To \:  find } }

 \sf  \Rrightarrow We  \: have \:  to \:  find  \: area  \: of  \: triangle.

\bf \underline{ \underline{\maltese \: Solution  } }

 \sf  Area  \: of  \: triangle =

\underline{\boxed{ \sf \dfrac{1}{2}\ \times\ \bigg[x_1\bigg(y_2\ -\ y_3\bigg)\ +\ x_2\bigg(y_3\ -\ y_1\bigg)\ +\ x_3\bigg(y_1\ -\ y_2\bigg)\bigg]}}

\bf \underline{Where},

\implies \sf{x_1 =5}

\implies \sf{x_2 =0 }

\implies \sf{x_3 =0 }

\implies \sf{y_1 =0}

\implies \sf{y_2 = 3}

\implies \sf{y_3 = - 4 }

\bf \underline{Now},

\sf Substitute \: the \: values,

 \sf \dfrac{1}{2}\ \times\ \bigg[5\bigg(3\ -\ ( - 4)\bigg)\ +\ 0\bigg( - 4\ -\ 0\bigg)\ +\ 0\bigg(0\ -\ 3\bigg)\bigg]

 \sf \dfrac{1}{2}\ \times\ \bigg[5(7)\ +\ 0( - 4)\ +\ 0( -\ 3)\bigg]

 \sf \dfrac{1}{2}\ \times\ \bigg[35\ +\ 0( - 4)\ +\ 0( -\ 3)\bigg]

 \sf \dfrac{1}{2}\ \times\ \bigg[35\ +\ 0\ +\ 0\bigg]

 \sf \dfrac{1}{2}\ \times\ \bigg[35\bigg]

 \sf \dfrac{1}{2}\ \times\ 35 =  \dfrac{35}{2}

\underline{ \boxed{ \red{ \bf So, area \: of \:triangle\:is\:\dfrac{35}{2} \: square \: units. }}}

Similar questions