Math, asked by ANKITRAI1095, 1 year ago

Find the area of the triangle whose coordinates are (1, 2) , (3, 4) and (5, 10)

Answers

Answered by wifilethbridge
14

Answer:

Step-by-step explanation:

A=(1,2)

B=(3,4)

C=(5,10)

We will use distance formula to find the sides of triangle

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

A=(x_1,y_1)=(1,2)\\B=(x_2,y_2)=(3,4)

Substitute the values

AB=\sqrt{(3-1)^2+(4-2)^2}

AB=\sqrt{(2)^2+(2)^2}

AB=\sqrt{4+4}

AB=\sqrt{8}

AB=2.82

B=(x_1,y_1)=(3,4)\\C=(x_2,y_2)=(5,10)

Substitute the values

BC=\sqrt{(5-3)^2+(10-4)^2}

BC=\sqrt{(2)^2+(6)^2}

BC=\sqrt{4+36}

BC=\sqrt{40}

BC=6.32

A=(x_1,y_1)=(1,2)\\C=(x_2,y_2)=(5,10)

Substitute the values

AC=\sqrt{(5-1)^2+(10-2)^2}

AC=\sqrt{(4)^2+(8)^2}

AC=\sqrt{16+64}

AC=\sqrt{80}

AC=8.94

Now to find the area we will use heron's formula:

Area=\sqrt{s(s-a)(s-b)(s-c)}

Where s=\frac{a+b+c}{2}

a=2.82

b=6.32

c=8.94

Substitute the values

s=\frac{2.82+6.32+8.94}{2}

s=9.04

Area=\sqrt{9.04(9.04-2.82)(9.04-6.32)(9.04-8.94)}

Area=3.910 units^2

Hence the area of the triangle is 3.910 sq.units.

Similar questions