Math, asked by thakurakshita17, 1 month ago

find the area of the triangle whose perimeter is 180 cm and two of its sides are of lenght 80 cm nd 18 cm

Answers

Answered by ANTMAN22
5

Question:

find the area of the triangle whose perimeter is 180 cm and two of its sides are of length 80 cm and 18 cm

To find:

The area of the triangle

Given:

  • Perimeter of the triangle=180cm
  • Two of the sides mesures=80cm,18cm

So,

    The 3rd side of the triangle={180-(80+18)}cm

                                                    ={180-98}cm

                                                    =82cm

Check:

         The three sides of the triangle=82cm,80cm and 18cm

Thus,

      The no sides of the triangle is equal then the triangle is a scalene triangle.

The "S" of scalene triangle=\frac{Perimeter of the triangle}{2}

[Note here,side 82cm be a , side 80cm be b , side 18cm be c}

Area of scalene triangle=\sqrt{s(s-a)(s-b)(s-c)}    

Solution:

The "s" of the triangle=\frac{180}{2}=90

The area of the triangle=\sqrt{90(90-82)(90-80)(90-18)}  cm^{2}

                                      =\sqrt{90 * 8 * 10 * 72}  cm^{2}

                                      =\sqrt{518400}  cm^{2}

                                      =\sqrt{720 * 720}  cm^{2}

                                      =720cm^{2}

Answer:

The area of the triangle=720cm^{2}

Similar questions