Math, asked by AjayBangar, 1 year ago

find the area of the triangle whose side are 10cm,24cm and 26cm.

Answers

Answered by Anonymous
44

\textbf{\underline{\underline{According\:to\:the\:Question}}}

★Here we have :-

a = 10 cm

b = 24 cm

c = 26 cm

★We have to Find Side,

★Using Formula we get :-

\tt{\rightarrow s=\dfrac{10+24+26}{2}}

\tt{\rightarrow s=\dfrac{60}{2}}

= 30

\large{\fbox{Using\;Herons\;Formula}}

\tt{\rightarrow\sqrt{s(s-a)(s-b)(s-c)}}

\tt{\rightarrow\sqrt{30(30-10)(30-24)(30-26)}}

\tt{\rightarrow\sqrt{30\times 20\times 6\times 4}}

\tt{\rightarrow\sqrt{2\times 3\times 5\times 2\times 2\times 5\times 3\times 2\times 2\times 2}}

= 2 × 2 × 2 × 3 × 5

= 120 cm²

Answered by αmαn4чσu
90

Question :-

Find the area of the triangle whose side are 10cm, 24cm, and 26cm.

Solution :-

Given that the three sides of a triangle are 10cm, 24cm and 26cm.

> a = 10cm

> b = 24cm

> c = 26cm

As the semi-perimeter is the half of the sum of sides of triangle.

s \:  =  \:  \frac{a + b + c}{2}  \\ s \:  =  \:  \frac{10 + 24 + 26}{2}   \\ s \:  =  \frac{60}{2}  \\ s \:  =  \: 30

Therefore area of triangle =

 =  \:  \sqrt{s \: (s - a) \: (s - b) \: (s - c)}  \\  =  \sqrt{30 \: (30 - 10) \: (30 - 24) \: (30 - 26)}  \\  =  \sqrt{30 \times 20 \times 6 \times 4}  \\  =  \sqrt{2 \times 3 \times5 \times 2 \times 2 \times 5 \times 3 \times 2 \times 2 \times 2}  \\  =2 \times 2 \times 2 \times 3 \times 5 \\  = 120 {cm}^{2}

Similar questions