Math, asked by dwaipayanbal, 2 months ago

Find the area of the triangle whose sides are 42 CM 34 cm and 20 CM in length and find the height corresponding to the longest side

Answers

Answered by SAMOBJUPRAVEEN
3

Answer: h=16cm

Step-by-step explanation:

sides of the triangle are A=42, B=34 , C=20

according to hero's formula, area of the triangle A=undrroot of S(S-A) (S-B) (S-C)

where S= A+B+C/2 = 42+34+20/2=48

now,

A=underroot of  48(48-42) (48-34) (48-20)

A=unedrroot of 48(6) (14) (28)

A=unedrroot of (6 x 8) (6) (14) (14 x 2)

A=14 x 6 x 4

A=336 cm2

let the height corresponding to longest side (42cm) is H

area = 1/2 x base x height

1/2 x 42 x H = 336

H=336 x 2/42 = 16cm

H=16CM

Answered by SavageBlast
62

Given:-

  • Sides of the Triangle = 42cm, 34cm and 20cm.

To Find:-

  • Length of the Height corresponding to the longest side.

Formula Used:-

  • {\boxed{\bf{Heron's Formula : Area= \sqrt{S(S-a)(S-b)(S-c)}}}}

  • {\boxed{\bf{Area\:of\: Triangle= \dfrac{1}{2}\times base \times height}}}

Solution:-

For Area of Triangle:-

Using Heron's Formula,

Firstly,

\sf :\implies\:S =\dfrac{a+b+c}{2}

Here,

  • S = Semi Perimeter

  • a = 42 cm

  • b = 34 cm

  • c = 20 cm

Putting values,

\sf :\implies\:S =\dfrac{42+34+20}{2}

\sf :\implies\:S =\dfrac{96}{2}

\sf :\implies\:S =48\:cm

Now,

\sf :\implies\:Area= \sqrt{S(S-a)(S-b)(S-c)}

Putting values,

\sf :\implies\:Area= \sqrt{48(48-42)(48-34)(48-20)}

\sf :\implies\:Area= \sqrt{48\times 6\times 14\times 28}

\sf :\implies\:Area= \sqrt{1,12,896}

\sf :\implies\:Area= 336\:cm^2

For Height corresponding to the longest side:-

  • Longest Side = 42cm

\sf :\implies\:Area\:of\: Triangle= \dfrac{1}{2}\times base \times height

\sf :\implies\:336= \dfrac{1}{2}\times 42 \times height

\sf :\implies\:336= 21 \times height

\sf :\implies\: Height= \dfrac{336}{21}

\sf :\implies\: Height= 16\:cm

Hence, The Length of the Height Corresponding to the longest side is 16cm.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions