Math, asked by Sniperman, 1 year ago

find the area of the triangle whose sides are 8, 9, 13 m(Herons formula)

Answers

Answered by asthakumari605
9

Answer:

s=a+b+c/2

= 8+9+13/2=30/2

=15m

Area of the triangle = √s(s-a)(s-b)(s-c)

=√15(15-8)(15-9)(15-13) m²

= √15*7*6*2 m²

=√5*3*7*2*3*2. m²

= 3*2√7*5. m²

= 6√35 m²

Hope it helps you !!!!!

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=35.49\:m}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 8 m,9 m,13 m} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{8+ 9+ 13}{2}  \\  \\  : \implies s =  \frac{30}{2}  \\  \\  \green{ : \implies s = 15} \\  \\   \circ\:  \bold{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{15(15- 8)(15-9)(15- 13)}  \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{15 \times 7\times 6\times 2}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{1260}   \\  \\  :  \implies \text{Area \: of \: triangle =}35.49 \: m^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 35.49 {m}}^{2} }

Similar questions