Math, asked by vaniSrinivas, 1 year ago

find the area of the triangle whose sides have 12cm, 6cm, 15cm, using Heron's formula

Answers

Answered by aryandhar7450
7

Here is the answer to your questions

Attachments:
Answered by BrainlyConqueror0901
12

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=34.19\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 12 cm,6 cm,15 cm} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{12+ 6+ 15}{2}  \\  \\  : \implies s =  \frac{33}{2}  \\  \\  \green{ : \implies s = 16.5} \\  \\   \circ\:  \bold{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{16.5(16.5- 12)(16.5-6)(16.5- 15)}  \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{16.5 \times 4.5\times 10.5\times 1.5}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{1169.43475}   \\  \\  :  \implies \text{Area \: of \: triangle =}34.19\: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 34.19 {cm}}^{2} }

Similar questions