Math, asked by allwinsen, 25 days ago

find the area of the triangle whose two of its sides are 13 cm and 14 cm and perimeter is 42 cm​.

Answers

Answered by llCuteChorill
1

third side is equal to 42-(13+14) = 15

a=13,b=14,c=15

Semi-perimeter s=(a+b+c)/2=(13+14+15)/2=21

Area, A = s(s−a)(s−b)(s−c)

A=21(21−13)(21−14)(21−15)

A=84 cm2

mark me as the brainliest

Answered by Anonymous
22

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\red{Given :}}}}}}}\end{gathered}

  • \leadsto Two sides of Triangle = 13 cm and 14 cm.
  • \leadsto Perimeter of Triangle = 42 cm

\begin{gathered} \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\red{To Find :}}}}}}}\end{gathered}

  • \leadsto Area of Triangle

\begin{gathered} \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\red{Using Formula :}}}}}}}\end{gathered}

\quad\dag\underline{\boxed{\sf{Perimeter  \: of \:  \triangle = sum  \: of  \: all \:  sides}}}

 \quad{\dag{\underline{\boxed{\sf{S =  \dfrac{a + b + c}{2}}}}}}

\quad{\dag{\underline{\boxed{\sf{Area \: of \:   \triangle =  \sqrt{s(s - a)(s - b)(s - c)}}}}}}

\begin{gathered} \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\red{Solution:}}}}}}}\end{gathered}

\bigstar{\underline{\underline{\pmb{\frak{\green{Firstly \:  finding  \: third  \: side \:  of \:  triangle :-}}}}}}

  • Let the the side of triangle be "x" cm.

According to the question

 \quad{\longmapsto{\sf{Perimeter  \: of \:  \triangle = sum  \: of  \: all \:  sides}}}

  • Substituting the values

 \quad{\longmapsto{\sf{42 \: cm = 13 \: cm + 14 \: cm +  x}}}

\quad{\longmapsto{\sf{42 = 17 +  x}}}

\quad{\longmapsto{\sf{42 - 17 =  x}}}

\quad{\longmapsto{\sf{15 =  x}}}

{\quad{\dag{\underline{\boxed{\sf{\pink{x = 15 \: cm}}}}}}}

{\therefore{\sf{\underline{\underline{\red{The \: third \: side \: of \: triange\:  is \:  15 \: cm..}}}}}}

\begin{gathered} \end{gathered}

\bigstar{\underline{\underline{\pmb{\frak{\green{Now \:  calculating \:  the \:  semi  \: perimeter  \: of \:  triangle  :-}}}}}}

 \quad{\longmapsto{\sf{S =  \dfrac{a + b + c}{2}}}}

  • Substituting the values

 \quad{\longmapsto{\sf{S =  \dfrac{13 + 14 + 15}{2}}}}

 \quad{\longmapsto{\sf{S =  \dfrac{42}{2}}}}

 \quad{\longmapsto{\sf{S =  \cancel{\dfrac{42}{2}}}}}

 \quad{\longmapsto{\sf{S = 21 \: cm}}}

\quad\dag{\underline{\boxed{\sf{\pink{Semi \: perimeter = 21 \: cm}}}}}

{\therefore{\sf{\underline{\underline{\red{The \: semipeter \: of \: triangle\:  is \:  21 \: cm..}}}}}}

\begin{gathered} \end{gathered}

\bigstar{\underline{\underline{\pmb{\frak{\green{Finding  \: the  \: area \:  of \:  triangle \:  by \:  heron's \:  Formula  :-}}}}}}

 \quad{\longmapsto{\sf{Area \: of \:   \triangle =  \sqrt{s(s - a)(s - b)(s - c)}}}}

  • Substituting the values

\quad{\longmapsto{\sf{Area \: of \:   \triangle =  \sqrt{21(21 - 13)(21 - 14)(21 - 15)}}}}

\quad{\longmapsto{\sf{Area \: of \:   \triangle =  \sqrt{21(8)(7)(6)}}}}

\quad{\longmapsto{\sf{Area \: of \:   \triangle =  \sqrt{21 \times 8 \times 7 \times 6}}}}

\quad{\longmapsto{\sf{Area \: of \:   \triangle =  \sqrt{7056 }}}}

\quad{\longmapsto{\sf{Area \: of \:   \triangle =  {84 \:  {cm}^{2} }}}}

\quad\dag{\underline{\boxed{\sf{\pink{Area \: of \:   \triangle =  {84 \:  {cm}^{2}}}}}}}

{\therefore{\sf{\underline{\underline{\red{The \:  Area  \: of  \: Triangle \:  is  \: 84  \:  {cm}^{2} ..}}}}}}

\begin{gathered} \end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\red{ Learn More :}}}}}}}\end{gathered}

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Attachments:
Similar questions