Math, asked by radkrish, 1 year ago

find the area of the triangle whose vertices are (0,0),(1,2),(4,3)

Answers

Answered by deepabaldawa14
5

Answer:

Let A(0,0)=(x1,y1), B(1,2)=(x2,y2) and C(4,3)=(x3,y3)

ar(ABC)=1÷2{x1(y2-y3)+x2(y3-y1)+x3(y1-y2)}

ar(ABC)=1÷2{0(2-3)+1(3-0)+4(0-2)}

ar(ABC)=1÷2{0(-1)+1(3)+4(-2)}

ar(ABC)=1÷2(0+3-8)

ar(ABC)=1÷2(-5)

ar(ABC)=-2.5 sq. units

Step-by-step explanation:


Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=2.5\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (0,0) } \\  \\ \tt{: \implies Coordinate \: of \: B = (1,2) } \\  \\ \tt{: \implies Coordinate \: of \: C = (4,3) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |0(2 - 3) + 1(3 - 0) + 4(0- 2)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |0\times -1 +  1\times 3 + 4 \times -2 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-5| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 5} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =2.5 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions