Math, asked by andhibharath5050, 5 months ago

Find the area of the triangle whose vertices are
(1) (2, 3) (-1,0), (2,-4)
(in) (0,0), (3,0) and (0,2)
(-5, -1), (3.-5. (32)​

Answers

Answered by ItzWhiteStorm
9

ǫsɪɴ:

  • Find the area of triangle whose vertices are
  • (2,3)(-1,0)(2,-4)
  • (-5,-1(3,-5)(3,2)

sʟɪɴ:

i) (2,3)(-1,0),(2,-4)

Let the two points be A(2,3) ,B(-1,0),C(2,-4)

Required formula for Area of triangle ABC =  \frac{1}{2} [ x_{1}(y_{2} - y_{3}) +  x_{2}(y_{3} - y_{1}) +  x_{3}(y_{1} -  y_{2}) ]

 x_{1} = 2, y_{1} = 3

x _{2} =  - 1,y_{2} = 0

 x_{3} = 2,y_{3} =  - 4

Area of triangle ABC =  \frac{1}{2} [2(0-(-4))+(-1)(-4-3)+2(3-0)]

 =  \frac{1}{2} [2(4) + (-1)(-7) + 2(3)]

 =  \frac{1}{2} [8 + 7 + 6]

 =  \frac{1}{2}  \times 21

= 10.5 square units

_______________________________

ii) (-5,-1)(3,-5)(5,2)

Let the two points be A(-5,-1),B(3,-5),C(5,2)

 x_{1} =  - 5,y_{1} =  - 1

x _{2}  = 3, y_{2} =  - 5

x_{3} = 5,y_{3} = 2

Area of triangle ABC =  \frac{1}{2} [(-5)(-5-2) + 3 (2-(-1)) + 5(-1-(-5))]

 =  \frac{1}{2} [-5(-7) + 3(2+1) + 5(-1+5) ]

  = \frac{1}{2} [-5(-7) + 3(3) + 5(4) ]

  = \frac{1}{2} [35 + 9 + 20 ]

 =  \frac{1}{2}  \times 64

= 32 square units

_______________________________

Similar questions
Math, 11 months ago