Math, asked by gwynethwingell3, 2 months ago

Find the area of the triangle whose vertices are (-3,5), (5,4) and (5,-2).

Answers

Answered by sameerPandey27
1

Step-by-step explanation:

this is the answer with diagram

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

The given vertices of triangle are ( - 3, 5 ), ( 5, 4 ) and ( 5, - 2 ).

Now, we know that to find the area of triangle having vertices, the formula is given by

\boxed{ \rm{\ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]}}

Here, Coordinates are ( - 3, 5 ), ( 5, 4 ) and ( 5, - 2 ).

So,

  • x₁ = - 3

  • x₂ = 5

  • x₃ = 5

  • y₁ = 5

  • y₂ = 4

  • y₃ = - 2

So, on substituting the values, we get

\rm :\longmapsto\:Area =\dfrac{1}{2} | x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) |

\rm \:  =  \:  \: \dfrac{1}{2} | - 3(4 - ( - 2)) + 5( - 2 - 5) + 5(5 - 4)|

\rm \:  =  \:  \: \dfrac{1}{2} | - 3(4 + 2) + 5( - 7) + 5(1)|

\rm \:  =  \:  \: \dfrac{1}{2} | - 3(6)   - 35 + 5|

\rm \:  =  \:  \: \dfrac{1}{2} |  - 18 - 30|

\rm \:  =  \:  \: \dfrac{1}{2} |  - 48|

\rm \:  =  \:  \: \dfrac{1}{2} |48|

\rm \:  =  \:  \: \ \: 24 \: square \: units

Additional Information :-

Distance Formula :-

• Distance formula is used to find the distance between two given Points.

\bf\implies \:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

Section Formula:-

• Section Formula is used to find the co ordinates of the point(Q) which divides the line segment joining the points A and B internally in the ratio m : n

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n},  \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

Midpoint Formula :-

• Mid Point formula is used to find the Mid point on any line segment.

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{x_2 + x_1}{2},  \dfrac{y_2 + y_1}{2}\Bigg) \quad}}}}

Similar questions