Math, asked by anujbalodi96, 1 year ago

Find the area of the triangle whose vertices are :(-4,6) (20,8) (9,10)​

Answers

Answered by amitnrw
1

Answer:

area of triangle = 35 sq units

Step-by-step explanation:

(-4,6) (20,8) (9,10)

x1 = -4. y1= 6

x2= 20. y2 =8

x3=9. y3= 10

using the formula to find area of triangle:

area of triangle = (1/2)| x1(y2-y3) + x2(y3-y1)+ x3(y1-y2)|

= (1/2) | -4(8-10) + 20(10-(6)) +9(6-8)|

= (1/2) | 8 + 80 -18|

= 70/2

=35

area of triangle = 35 sq units

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=35\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (-4,6) } \\  \\ \tt{: \implies Coordinate \: of \: B = (20,8) } \\  \\ \tt{: \implies Coordinate \: of \: C = (9,10) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-4(8 - 10) + 20(10 - 6) + 9(6 - 8)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-4 \times -2 +  20\times 4 + 9 \times -2 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |8 + 80 -18| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 70} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =35 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions