Math, asked by ramarthishekar59, 8 months ago

Find the area of the triangle whose vertices are
(5,2)(3,-5) and (-5, -1)

Answers

Answered by Tanujrao36
29

Answer :-

Consider any triangle with the given Coordinates

\setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\put(-3,-3){\line(1,1){12}}\put(-3,-3){\line(1,0){20}}\put(17,-3){\line(-2,3){8}}\end{picture}

Concept Used :-

  • We will use the formula of area of triangle. Here, the vertices are given in the question

\sf{\ x_{1},\ y_{1}}=(5,2)

\sf{\ x_{2},\ y_{2}}=(3,-5)

\sf{\ x_{3},\ y_{3}}=(-5,-1)

Formula :-

\small\sf{\underline{\boxed{\purple{\dfrac{1}{2}[\ x_{1}(\ y_{2}-\ y_{3})+\ x_{2}(\ y_{3}-\ y_{1})+\ x_{3}(\ y_{1}-\ y_{2})]}}}}

Solution :-

\small\sf{\dfrac{1}{2}[5(-5-(-1))+3(-1-2)+(-5)(2-(-5))]}

\small\sf{\dfrac{1}{2}[5(-5+1)+3(-1-2)-5(2+5)]}

\small\sf{\dfrac{1}{2}[5(-4)+3(-3)-5(7)]}

\small\sf{\dfrac{1}{2}[-20-9-35]}

\small\sf{\dfrac{1}{2}[-64]}

\sf{-32\:unit}

But Area can't be negative

\sf{\boxed{\boxed{\orange{\dag{Area=32\:sq.\:unit}}}}}

So, the Area of the triangle is 32 sq. unit

Similar questions