Math, asked by debraj387, 1 year ago

find the area of the triangle whose vertices are (-8,4),(-6,6),(-3,9)

Answers

Answered by sneha41046
1
are of triangle=
1/2{ x1(y2-y3)+ x2(y3-y1) +x3(y1-y2)}
Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=0\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (-8,4) } \\  \\ \tt{: \implies Coordinate \: of \: B = (-6,6) } \\  \\ \tt{: \implies Coordinate \: of \: C = (-3,9) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-8(6- 9) -6(9 - 4) - 3(4- 6)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-8\times -3 -6\times 5 - 3 \times -2 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |24- 30 +6| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 0} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =0\: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions