Find the area of the triangle whose vertices are ( - 8, 4 ), ( - 6, 6 ), and ( -3, 4 ).
Solve with figure
Answers
Answer:
5
Step-by-step explanation:
Given vertices are:
⇒ (x₁,y₁) = (-8,4)
⇒ (x₂,y₂) = (-6,6)
⇒ (x₃,y₃) = (-3,4)
Area of triangle = (1/2)[x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]
= (1/2)[-8(6 - 4) + -6(4 - 4) + -3(4 - 6)]
= (1/2)[-8(2) + -6(0) + -3(-2)]
= (1/2)[-16 + 6]
= (1/2)[-10]
= 5 units.
Hope it helps!
Answer:
Area of Triangle = 5
Step-by-step explanation:
HEY THERE!
Question:
Find the area of the triangle whose vertices are ( - 8, 4 ), ( - 6, 6 ), and ( -3, 4 ).
Method of Solution:
Area of Triangle = Area of triangle = (1/2)[|x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)|]
Given: (x₁,y₁) = (-8,4)
⇒ (x₂,y₂) = (-6,6)
⇒ (x₃,y₃) = (-3,4)
Substitute the Given value in Equation Formula!
Area of triangle = (1/2)[|x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)|]
=> 1/2|[-8{6-4) }+ -6{4-4} + -3(4-6)}]
=> 1/2 [-8(2) +0+6]
=> 1/2[-16+6]
=>1/2|[-10|]
=> 1/2[10]
=> 1×5
=5