Math, asked by VijayaLaxmiMehra1, 1 year ago

Find the area of the triangle whose vertices are ( - 8, 4 ), ( - 6, 6 ), and ( -3, 4 ).


Solve with figure

Answers

Answered by siddhartharao77
10

Answer:

5

Step-by-step explanation:

Given vertices are:

⇒ (x₁,y₁) = (-8,4)

⇒ (x₂,y₂) = (-6,6)

⇒ (x₃,y₃) = (-3,4)

Area of triangle = (1/2)[x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]

                          = (1/2)[-8(6 - 4) + -6(4 - 4) + -3(4 - 6)]

                          = (1/2)[-8(2) + -6(0) + -3(-2)]

                          = (1/2)[-16 + 6]

                          = (1/2)[-10]

                          = 5 units.


Hope it helps!

Answered by Anonymous
6

Answer:


Area of Triangle = 5


Step-by-step explanation:




HEY THERE!



Question:


Find the area of the triangle whose vertices are ( - 8, 4 ), ( - 6, 6 ), and ( -3, 4 ).



Method of Solution:


Area of Triangle = Area of triangle = (1/2)[|x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)|]



Given: (x₁,y₁) = (-8,4)


⇒ (x₂,y₂) = (-6,6)


⇒ (x₃,y₃) = (-3,4)


Substitute the Given value in Equation Formula!


Area of triangle = (1/2)[|x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)|]



=> 1/2|[-8{6-4) }+ -6{4-4} + -3(4-6)}]


=> 1/2 [-8(2) +0+6]


=> 1/2[-16+6]


=>1/2|[-10|]


=> 1/2[10]



=> 1×5


=5




Anonymous: :)
Similar questions