Find the area of the triangle whose vertices are (acidα,bsinα),(acosβ,bsinβ),(acos¥,bsin¥)
Answers
Answered by
0
[acosA bsinA 1] =abcosA{sinB-sinY}-absinA{cosB-cosY}+ab{cosBsinY-sinB
[acosB bsinB 1] cosY}
[acosY bsinY 1] =ab{sin(B-A)+sin(A-Y)+sin(Y-B)}
[acosB bsinB 1] cosY}
[acosY bsinY 1] =ab{sin(B-A)+sin(A-Y)+sin(Y-B)}
Similar questions