Math, asked by tusharraj77123, 5 months ago

Find the area of the triangle with heron method -:

1. 21cm , 17 cm , 10 cm

2. 42 cm , 39 cm , 45 cm


No spams ​

Answers

Answered by BrainlyPhantom
20

Answers:

Question 1:

21 cm, 17 cm and 10 cm

a = 21 cm

b = 17 cm

c = 10 cm

S = \dfrac{a+b+c}{2}

= \dfrac{21+17+10}{2}=\dfrac{48}{2}=24cm

Area =\sqrt{S(S-a)(S-b)(S-c)}

=\sqrt{24(24-21)(24-17)(24-10)}

=\sqrt{24\times3\times7\times14}

=\sqrt{3\times8\times3\times7\times2\times7}

= 3 x 7 x 2 x 2

= 84cm²

∴ The area of the triangle is 84cm².

Question 2:

42 cm, 39 cm and 45 cm

a = 42 cm

b =39 cm

c = 45 cm

S = \dfrac{a+b+c}{2}

= \dfrac{42+39+45}{2}=\dfrac{126}{2}=63cm

Area = \sqrt{S(S-a)(S-b)(S-c)

= \sqrt{63(63-42)(63-39)(63-45)

=\sqrt{63\times21\times24\times18

=\sqrt{9\times7\times7\times3\times3\times8\times9\times2

=3\times3\times3\times7\sqrt{2\times4\times2

=3 x 3 x 3 x 7 x 2 x 2

= 756cm²

∴ The area of the triangle is 756cm².

Knowledge Bytes:

→ Heron's Formula

The area of a triangle of sides a, b and c is \sqrt{S(S-a)(S-b)(S-c) where semi-perimeter S is the half of the sum of all sides of the triangle. \dfrac{a+b+c}{2}.

Answered by Anonymous
9

\bold{\underline{\underline{Let's \: \: have \: \:  a \: \: glance \: \: at \: \:  Heron's \: \: Formula}}}

• Using Heron's Formula we can find the area of any triangle.

✯ Steps for using Heron's Formula :-

(i) Find Semi Perimeter of the triangle.

\bold{S = \frac {a \: + \: b\: +\: c}{2}}

(ii) Then use the below ⬇️ formula.

\bold {Heron's \: \:  Formula = \sqrt{s(s - a)(s-b)(s - c)}}

Here , a ,b and c denotes the different sides of the triangle.

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

{\frak{Question \: 1}}

a = 21 cm

b = 17 cm

c = 10 cm

\\

\bold{Semi \: Perimeter = \frac {a \: + \: b\: +\: c}{2}}

S = (21cm + 17cm + 10cm)/2

S = 48/2 cm

S = 24 cm

\\

\bold {Heron's \: \:  Formula = \sqrt{s(s - a)(s-b)(s - c)}}

Area = √24 (24 - 21) (24 - 17) (24 - 10)

Area = √24 × 3 × 7 × 14

Area = √2 × 2 × 2 × 3 × 3 × 7 × 7 × 2

Area = √2 × 2 × 2 × 2 × 3 × 3 × 7 × 7

Area = 2 × 2 × 3 × 7 cm²

Area = 84 cm²

∴ The area of the triangle is 84cm².

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

{\frak{Question \: 2}}

a = 42 cm

b = 39 cm

c = 45 cm

\\

\bold{Semi \: Perimeter = \frac {a \: + \: b\: +\: c}{2}}

S = (42cm + 39cm + 42cm)/2

S = 126/2 cm

S = 63 cm

\\

\bold {Heron's \: \:  Formula = \sqrt{s(s - a)(s-b)(s - c)}}

Area = √63 (63 - 42) (63 - 39) (63 - 45)

Area = √63 × 21 × 24 × 18

Area = √9 × 7 × 7 × 3 × 2 × 2 × 2 × 3 × 9 × 2

Area = √9 × 9 × 7 ×7 × 3 × 3 ×2 × 2 × 2 × 2

Area = 9 × 7 × 3 × 2 × 2 cm²

Area = 756cm²

∴ The area of the triangle is 756cm².

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions