Math, asked by Anonymous, 4 months ago

Find the area of the triangle with sides 21 cm, 16 cm and 13 cm. Also, find the perimeter of an equilateral
triangle equal in area to this triangle.​

Answers

Answered by vasugupta230804
0

Answer:

Step-by-step explanation:

sum of sides = 21cm+16cm+13cm = 50cm = s

s/2 = 25

By Heron's formula:

\sqrt{(s)(s-a)(s-b)(s-c)}\\= \sqrt{(25)(25-21)(25-16)(25-13)}\\= \sqrt{(25)(4)(9)(12)}\\\\= 5*2*3 *2\sqrt{3}\\= 60\sqrt{3} cm^2\\

Area of equilateral triangle: = \frac{\sqrt{3}}{4}a^2

\frac{\sqrt{3}}{4}a^2 = 60\sqrt{3}\\a^2 = 240\\a = 4\sqrt{15}\\

Perimeter:

=3a\\= 3 * 4\sqrt{15}\\=12 \sqrt{15}cm

Answered by DivineSpirit
3

Answer:

Answer:

Step-by-step explanation:

sum of sides = 21cm+16cm+13cm = 50cm = s

s/2 = 25

By Heron's formula:

\begin{gathered}\sqrt{(s)(s-a)(s-b)(s-c)}\\= \sqrt{(25)(25-21)(25-16)(25-13)}\\= \sqrt{(25)(4)(9)(12)}\\\\= 5*2*3 *2\sqrt{3}\\= 60\sqrt{3} cm^2\\\end{gathered}

Area of equilateral triangle: = \frac{\sqrt{3}}{4}a^2

\begin{gathered}\frac{\sqrt{3}}{4}a^2 = 60\sqrt{3}\\a^2 = 240\\a = 4\sqrt{15}\\\end{gathered}

Perimeter:

\begin{gathered}=3a\\= 3 * 4\sqrt{15}\\=12 \sqrt{15}cm\end{gathered}

Similar questions