Social Sciences, asked by Anonymous, 5 months ago

Find the area of the triangle with sides 21 cm, 16 cm and 13 cm. Also, find the perimeter of an equilateral
triangle equal in area to this triangle.​

Answers

Answered by Anonymous
14

AnswEr :

☯ Given sides of the equilateral ∆ are 21 cm, 16 cm & 13 cm.

{\dag}\:\underline{\frak{Using \ Heron's \ Formula \: \: :}}

\star\: \small\boxed{\sf{\purple{Area \: of \: \triangle = \sqrt{s(s - a) (s - b) (s - c)}}}}

⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀

:\implies\sf S_{(semi perimeter)} = \dfrac{a + b + c}{2} \\\\\\:\implies\sf s =  \dfrac{21 + 16 + 13}{12} \\\\\\:\implies\sf s = \cancel\dfrac{50}{2} \\\\\\:\implies\boxed{\sf{\purple{ s = 25}}}

⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀

:\implies\sf \sqrt{25(25 - 21) (25 - 16) (25 - 13)}\\\\\\:\implies\sf\sqrt{25 \times 4 \times 9 \times 12} \\\\\\:\implies\sf\sqrt{ 5 \times 5 \times 2 \times 2 \times 3 \times 3 \times 2 \times 3 \times 2} \\\\\\:\implies\sf 60 \sqrt{3}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀

\therefore\: \underline{\sf{Here\: we \: get \: area \: is \: \bf{60 \sqrt{3}}}}

⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀

━━━━━━━━━━━━━━━━━

☯ Now, finding area of the equilateral ∆ :

\star\: \small\boxed{\sf{\pink{ Area \: of \: equilateral \: \triangle = \dfrac{\sqrt{3}}{4} (a)^2}}}

:\implies\sf 60 \sqrt{3} = \dfrac{\sqrt{3}}{4}(a)^2 \qquad \quad \Bigg[ Equating \: both \: areas \Bigg] \\\\\\:\implies\sf 60 \cancel{\sqrt{3}} = \dfrac{\cancel{\sqrt{3}}}{4}(a)^2 \\\\\\:\implies\sf 60 = \dfrac{(a^2)}{4} \\\\\\:\implies\sf a^2 = 4 \times 60 \\\\\\:\implies\sf a = \sqrt{240} \\\\\\:\implies\boxed{\sf{\pink{a = 4\sqrt{15}}}}

⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀

━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀

☯ Perimeter of equilateral ∆ is equal to the Area of the ∆ :

\star\: \small\boxed{\sf{\purple{Perimeter \: of \: \triangle = 3 \times Area }}}

:\implies\sf Area = 3 \times 4 \sqrt{15} \qquad \quad \Bigg[ Area = 4 \sqrt{15}\Bigg] \\\\\\\:\implies \boxed{\sf{\purple{ Area = 12\sqrt{15}}}}

\therefore\: \underline{\sf{Perimeter \: of \: equilateral \: \triangle \: is \: \bf{12\sqrt{15}}}}

Answered by Sakhtlondi
0

\sf{Refer \  to \  the \  attachment :)}

Attachments:
Similar questions