English, asked by Aeviternal, 3 months ago

Find the area of the triangle with sides 21 cm, 16 cm and 13 cm. Also, find the perimeter of an equilateral
triangle equal in area to this triangle.​

Answers

Answered by Anonymous
2011

Area of an equilateral triangle = Area of triangle with sides 21cm, 16cm and 13cm.

Now,

Let's find the Area of triangle with given sides.

We know that,

\sf{ s = \dfrac{a + b + c}{2}}

\sf{ = \dfrac{21 + 16 + 13}{2}}

\sf{ = \dfrac{50}{2}}

\sf{ = 25}

Using Heron's Formula,

\sf{Area = \sqrt{s(s - a)(s - b)(s - c)}}

\sf {= \sqrt{25(25 - 21)(25 - 16)(25 - 13)}}

\sf{ = \sqrt{25 \times 4 \times 9 \times 12}}

\sf{ = \sqrt[60]{3}}

Thus, Area = \sf{ \sqrt[60]{3}}

Now,

\sf{Area \: of \: equilateral \: triangle = \dfrac{ \sqrt{3} }{4} \times a^{2}}

\pink\implies

\sf{\dfrac{ \sqrt{3} }{4} {a}^{2} = 60 \sqrt{3}}

Cancelling \sf\sqrt{3} on both sides,

\sf{ \dfrac{ {a}^{2} }{4} = 60}

\sf{ a^{2} = 60 \times 4}

\sf{a = \sqrt{240}}

a = \sf{ \sqrt[4]{15}}

Thus, Side of the equilateral triangle is \sf{ \sqrt[4]{15}}.

Now,finding the perimeter.

\sf{Perimeter \: of \: triangle = 3a}

\sf{ = 3 \times \sqrt[4]{15}}

\sf {= \sqrt[12]{15}}

Thus,

Perimeter of the equilateral triangle is \large\sf{ \sqrt[12]{15}}

\large\sf\pink{\sqrt[12]{15} }

Answered by HaryanviStar
1

Answer:

The sides of triangle given: a =18 cm, b = 10 cm

Perimeter of the triangle = (a + b + c)

42 = 18 + 10 + c

42 = 28 + c

c = 42 - 28

c = 14 cm

Semi Perimeter

s = (a + b + c) = 42/2 = 21 cm

By using Heron’s formula,

Area of a triangle = √s(s - a)(s - b)(s - c)

= √21(21 - 18)(21 - 10)(21 - 14)

= √21 × 3 × 11 × 7

= 21√11 cm2

Area of the triangle = 21√11 cm2.

Explanation:

it's Naman here ✌️

Similar questions