Math, asked by friyanelavia, 1 year ago

find the area of the triangle with the length of sides 9cm, 10cm and 17 cm​

Answers

Answered by Ananya7514
24

Answer:

36cm^2

Step-by-step explanation:

according to heron's formula,

 \sqrt{s(s - a)(s - b)(s - c)}

where, S=(A+B+C) /2

and, a, b, C are measures of sides of triangle,.

hence, as, A=9cm,B=10cm,C=17cm,

hence, S=(9+10+17)/2cm=36/2cm=18 cm

hence area=√18(18-9)(18-10)(18-17)

=√18 x 9 x 8 x 1

=√1296

=36cm^2

Answered by Fifth
12

The answer to your question is 36 cm²

BY USING HERON'S FORMULA:

S=\frac{a+b+c}{2}

 =\frac{9+10+17}{2}

 = \frac{36}{2}

 = 18

area (triangle) = \sqrt{S(S-a)(S-b)(S-c)}

                        = \sqrt{18(18-9)(18-10)(18-17)}

                        = \sqrt{18*9*8*1}

                        = \sqrt{2*9*9*2*4}

                        = 9 * 2 * 2

                        = 36 cm²

Hope this helps

Mark as brainliest

Similar questions