find the area of the triangle with the length of sides 9cm, 10cm and 17 cm
Answers
Answered by
24
Answer:
36cm^2
Step-by-step explanation:
according to heron's formula,
where, S=(A+B+C) /2
and, a, b, C are measures of sides of triangle,.
hence, as, A=9cm,B=10cm,C=17cm,
hence, S=(9+10+17)/2cm=36/2cm=18 cm
hence area=√18(18-9)(18-10)(18-17)
=√18 x 9 x 8 x 1
=√1296
=36cm^2
Answered by
12
The answer to your question is 36 cm²
BY USING HERON'S FORMULA:
S=![\frac{a+b+c}{2} \frac{a+b+c}{2}](https://tex.z-dn.net/?f=%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D)
=![\frac{9+10+17}{2} \frac{9+10+17}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B9%2B10%2B17%7D%7B2%7D)
= ![\frac{36}{2} \frac{36}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B36%7D%7B2%7D)
= 18
area (triangle) = ![\sqrt{S(S-a)(S-b)(S-c)} \sqrt{S(S-a)(S-b)(S-c)}](https://tex.z-dn.net/?f=%5Csqrt%7BS%28S-a%29%28S-b%29%28S-c%29%7D)
= ![\sqrt{18(18-9)(18-10)(18-17)} \sqrt{18(18-9)(18-10)(18-17)}](https://tex.z-dn.net/?f=%5Csqrt%7B18%2818-9%29%2818-10%29%2818-17%29%7D)
= ![\sqrt{18*9*8*1} \sqrt{18*9*8*1}](https://tex.z-dn.net/?f=%5Csqrt%7B18%2A9%2A8%2A1%7D)
= ![\sqrt{2*9*9*2*4} \sqrt{2*9*9*2*4}](https://tex.z-dn.net/?f=%5Csqrt%7B2%2A9%2A9%2A2%2A4%7D)
= 9 * 2 * 2
= 36 cm²
Hope this helps
Mark as brainliest
Similar questions