find the area of the triangle with the length of the side 9 cm , 10 cm , and 17 cm.
Answers
Answered by
6
Answer:
Hope it helps you..........
Attachments:
Answered by
3
Answer=The area of a triangle whose side lengths are a, b,a,b, and cc is given by
The area of a triangle whose side lengths are a, b,a,b, and cc is given byA=√{s(s-a)(s-b)(s-c)},
{s(s-a)(s-b)(s-c)},A=
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c)
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c)
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s=
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle)
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle)
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle) =
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle) = 2
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle) = 2a+b+c
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle) = 2a+b+c
{s(s-a)(s-b)(s-c)},A= s(s−a)(s−b)(s−c) ,where s=\dfrac{(\text{perimeter of the triangle})}{2}=\dfrac{a+b+c}{2}s= 2(perimeter of the triangle) = 2a+b+c , semi-perimeter of the triangle
S=(9+10+17)/2
36/2=18
Similar questions