Math, asked by srinaiahc, 27 days ago

Find the area of trapezium whose parallel sides are
of lengths 10cm and 12cm
and the distance between
them is 4 cm.​

Answers

Answered by Sauron
87

Answer:

The area of the trapezium is 44 cm²

Step-by-step explanation:

Parallel sides of the trapezium = 10 cm and 12 cm.

Distance between the parallel sides = 4 cm

The distance between the parallel sides is actually the height of the trapezium.

We're given with:

  • Side₁ = 10 cm
  • Side₂ = 12 cm
  • Height = 4 cm

________________________________

\sf{\bigstar{\:Area\:of\:Trapezium = \dfrac{Side_{1} +Side_{2}}{2} \times h}

\longrightarrow\sf{\dfrac{(10+12)}{2} \times 4

\longrightarrow\sf{\dfrac{22}{2} \times 4

\longrightarrow\sf{22 \times 2}

\longrightarrow\sf{44}

Area of trapezium = 44 cm²

Therefore, the area of the trapezium is 44 cm²

Attachments:
Answered by BrainlyRish
81

Given : The length of Parallel sides of Trapezium are 10 cm & 12 cm and the height or Distance between the parallel sides of the Trapezium is 4 cm .

Exigency To Find : The area of Trapezium.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀❍⠀Finding Area of Trapezium :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\\qquad\bigstar\:\bf\:Formula\:of\:Area\:of\:Trapezium\:\:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{Area _{(Trapezium)} \:: \dfrac{1}{2} \times h \times ( a + b) }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀Here , h is the Height or Distance between the parallel sides of Trapezium , a and b are the two parallel sides of Trapezium & ( a + b ) is the sum of the parallel sides of the Trapezium.

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf Area _{(Trapezium)} \:= \dfrac{1}{2} \times h \times ( a + b) \\

\qquad:\implies \sf Area _{(Trapezium)} \:= \dfrac{1}{2} \times 4 \times ( 10 + 12) \\

\qquad:\implies \sf Area _{(Trapezium)} \:= \dfrac{1}{2} \times 4 \times ( 22) \\

\qquad:\implies \sf Area _{(Trapezium)} \:= \dfrac{1}{2} \times 4 \times  22 \\

\qquad:\implies \sf Area _{(Trapezium)} \:= \dfrac{1}{\cancel {2}} \times \cancel {4} \times  22 \\

\qquad:\implies \sf Area _{(Trapezium)} \:= 2  \times 22 \\

\qquad:\implies \sf Area _{(Trapezium)} \:= 44 \\

\qquad :\implies \frak{\underline{\purple{\: Area _{(Trapezium)} \:= 44\:cm^2 }} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Area \:of\:Trapezium \:is\:\bf{44\:cm^2}}.}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Attachments:
Similar questions