Math, asked by shrey1669, 19 days ago

find the area of triangle (5,-2)(6,4)(7,-2)
please it is urjent ​

Answers

Answered by ilfamariyam
0

Answer:

A=hbb

2

Step-by-step explanation:

Let ABC be the triangle A(5,−2),B(6,4),C(7,−2)

By distance formula

AB=

(5−6)

2

+(−2−4)

2

=

(−1)

2

+(−6)

2

37

BC=

(6−7)

2

+(4−(−2)

2

=

(−1)

2

+(6)

2

=

37

CA=

(7−5)

2

+(−2−(−2))

2

=

(2)

2

+0

=2

Since AB=BC=

37

Hence (5,−2),(6,4) & (7,−2) are vertices of isosceles triangle.

Answered by AreehaNoor
0

Answer:

x1=5, x2=6, x3=7

y1= - 2,y2=4, y3=-2

Area of triangle =Absolute value of

x1(y2-y3) + x2(y3-y1) + x3(y1-y2) ÷ 2

=5(4 - (-2)) + 6(-2-(-2)) + 7(-2-4) ÷2

=5(6) + 6(0) + 7(-6) ÷2

=30 + 0 - 42 ÷2

=30-42 ÷2 = - 12 ÷2 = - 6

Removing the negative sign since the formula calls for absolute value, area of triangle is equal to 6.

Formula is the key. Just remember the formula to be able to find out area of any triangle when vertices are given.

Similar questions