Math, asked by u4nrosynnetha, 1 year ago


Find the area of triangle ABC in which BC=8 cm , AC=15 cm and AB=17cm. Find the length of altitude drawn on AB

Answers

Answered by jaya8717
55
Semi perimeter = s
s =( AB +BC + AC)/2
s = (17 + 8 + 15)/2 = 40/2 = 20cm
By Heron's formula, area of triangle ABC,
Area = √s(s-a)(s-b)(s-c)
         = √20 (20 - 17) (20 - 8) (20 - 15)
         = √20 (3 x 12 x 5)
         = √20 x 180
         = √3600 = 60cm²
Again area of triangle = 1/2 base x height\
                            60   = 1/2 x 17 x h
                             h = 120/17
                             h = 7.05cm

Answered by atharvashilpasudhir
4

Answer:

Semi perimeter = s

s =( AB +BC + AC)/2

s = (17 + 8 + 15)/2 = 40/2 = 20cm

By Heron's formula, area of triangle ABC,

Area = √s(s-a)(s-b)(s-c)

        = √20 (20 - 17) (20 - 8) (20 - 15)

        = √20 (3 x 12 x 5)

        = √20 x 180

        = √3600 = 60cm²

Again area of triangle = 1/2 base x height\

                           60   = 1/2 x 17 x h

                            h = 120/17

                            h = 7.05cm

Step-by-step explanation:

Similar questions