Math, asked by rabashshadu1234, 10 months ago

Find the area of triangle ABC whose vertices are A (-5, 7), B (-4, -5) and C (4, 5).

Answers

Answered by BrainlyPopularman
9

GIVEN :

• Vertices of triangle are A(-5 , 7) , B(-4 , -5) & C(4 , 5).

TO FIND :

• Area of triangle = ?

SOLUTION :

• If vertices are  \:\: \bf A(x_1 , y_1 ) \:\: ,  \:\: \bf B(x_2 , y_2 ) \:\: &  \:\: \bf C(x_3 , y_3 ) \:\: , then Area –

 \\  \implies \bf \: Area = \left|\begin{array}{ccc}\bf\:x_1 & \bf y_1 &  \bf1 \\ \\ \bf x_2 & \bf\:y_2 & \bf 1 \\ \\ \bf x_3 &  \bf y_3 &  \bf1 \end{array}\right| \\

• Here –

 \\ \bf { \huge{.}} \:\:\:\: x_1 = -5

 \\ \bf { \huge{.}} \:\:\:\: x_2 = -4

 \\ \bf { \huge{.}} \:\:\:\: x_3 = 4

 \\ \bf { \huge{.}} \:\:\:\: y_1 = 7

 \\ \bf { \huge{.}} \:\:\:\: y_2 = -5

 \\ \bf { \huge{.}} \:\:\:\: y_3 = 5

• Now put the values –

 \\  \implies \bf \: Area = \left|\begin{array}{ccc}\bf\: - 5 & \bf 7 &  \bf1 \\ \\ \bf  - 4 & \bf\: - 5 & \bf 1 \\ \\ \bf 4 &  \bf 5 &  \bf1 \end{array}\right| \\

 \\  \implies \bf \: Area = - 5( - 5 - 5) - 7( - 4 - 4) + 1( - 20 + 20) \\

 \\  \implies \bf \: Area = - 5( - 10) - 7( - 8) +0 \\

 \\  \implies \bf \: Area = 50 + 56 \\

 \\  \implies \large{ \boxed{ \bf Area = 106 \:  \: unit}} \\

▪︎ Hence , The area of triangle is 106 unit.

Answered by Anonymous
1

ANSWER:-

<font color=blue>

Area of ΔABC whose vertices are is

(x_1,y_1),(x_2,y_2)  \: and \: (x_3,y_3)are

Area  \: of ΔABC =  \frac{1}{2} [x_1(y_2,y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]

In ΔABC, vertices are A(−5,7),B(−4,−5) and C(4,5)

Area \: of  \: triangle \: =  \frac{1}{2}  (- 5 (- 5 - 5 ) - 4(5 - 7) + 4(7 + 5))

 =  \frac{1}{2} ( - 50 + 8 + 48)

 = 5 \: sq. \: units

HOPE IT'S HELPS YOU ❣️

Similar questions