Math, asked by KNeha1, 1 year ago

find the area of triangle formed by the points (0,0)(4,0)(4,3) by using heron's formula


Shravana1: Hello
Shravana1: What chapter you are referring to??
Shravana1: Is it Co-ordinate Geometry??

Answers

Answered by wifilethbridge
44

Answer:

6 sq. units.  

Step-by-step explanation:

A=(0,0)

B = (4,0)

C = (4,3)

Now find the sides of triangle AB,BC,AC

To find AB use distance formula :

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

(x_1,y_1)=(0,0)

(x_2,y_2)=(4,0)

Substitute the values in the formula :

AB=\sqrt{(4-0)^2+(0-0)^2}

AB=\sqrt{(4)^2}

AB=\sqrt{16}

AB=4

To Find BC

(x_1,y_1)=(4,0)

(x_2,y_2)=(4,3)

Substitute the values in the formula :

BC=\sqrt{(4-4)^2+(3-0)^2}

BC=\sqrt{(0)^2+(3)^2}

BC=\sqrt{9}

BC=3

To Find AC

(x_1,y_1)=(0,0)

(x_2,y_2)=(4,3)

Substitute the values in the formula :

AC=\sqrt{(4-0)^2+(3-0)^2}

AC=\sqrt{(4)^2+(3)^2}

AC=\sqrt{16+9}

AC=\sqrt{25}

AC=5

So, sides of triangle :

a =4

b=3

c=5

Now to find area:

Area = \sqrt{s(s-a)(s-b)(s-c)}  

Where s = \frac{a+b+c}{2}  

a,b,c are the side lengths of triangle  

Now substitute the values :  

s = \frac{4+3+5}{2}  

s =6  

Area = \sqrt{6(6-4)(6-3)(6-5)}  

Area = 6  

Hence the area of the given triangle is 6 sq. units.  

Similar questions