Math, asked by Anonymous, 1 year ago

Find the area of triangle having vertices at p(1,3,2), q(2,-1,1), r(-1,2,3) is

Answers

Answered by Swarup1998
25

Given: the vertices P(1,3,2), Q(2,-1,1) and R(-1,2,3)

To find: area of \Delta PQR

Solution:

  • We find the area of the triangle using vector method.

  • Position vector of P(\vec{p})=(1,3,2)

  • Position vector of Q(\vec{q})=(2,-1,1)

  • Position vector of R(\vec{r})=(-1,2,3)

  • The side \vec{PQ}=(1,-4,-1)

  • The side \vec{PR}=(-2,-1,1)

  • Now, \vec{PQ}\times \vec{PR}

  • =\left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\ 1&-4&-1\\-2&-1&1\end{array}\right|

  • =-5\hat{i}+\hat{j}-9\hat{k} [expanding along the first row]

  • Now, \frac{1}{2}|\vec{PQ}\times\vec{PR}|

  • =\frac{1}{2}\sqrt{(-5)^{2}+1^{2}+(-9)^{2}}

  • =\frac{1}{2}\sqrt{107}

Answer: area of \Delta PQR is \frac{1}{2}\sqrt{107} square units.

Similar questions