Math, asked by Anonymous, 15 hours ago

Find the area of triangle in 3 dimensions formed by A(-1,0,1), B(-2,1,0) and C(1,1,2).

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given vertices of  \triangleABC are

  • Coordinates of A (- 1, 0, 1)

  • Coordinates of B (- 2, 1, 0)

  • Coordinates of C (1, 1, 2)

So,

\rm \: \vec{OA}  =  - \hat{i}  + \hat{k}  \\

\rm \: \vec{OB}   =  - 2\hat{i}  + \hat{j}   \\

\rm \: \vec{OC}    =  \hat{i}  + \hat{j}  + 2\hat{k}   \\

Now, Consider

\rm \: \vec{AB}  = \vec{OB}  - \vec{OA}  \\

\rm \: \vec{AB}  =  - 2\hat{i}  + \hat{j}  + \hat{i}  - \hat{k}  \\

\rm\implies \:\boxed{ \rm{ \:\vec{AB}  =  - \hat{i}  + \hat{j}  - \hat{k}  \: }} \\

Now, Consider

\rm \: \vec{AC}  = \vec{OC}  - \vec{OA}  \\

\rm \: \vec{AC}  = \hat{i}  + \hat{j}  + 2\hat{k}  + \hat{i}  - \hat{k}  \\

\rm\implies \:\boxed{ \rm{ \:\vec{AC}  = 2\hat{i}  + \hat{j}  + \hat{k}  \: }} \\

Now, Consider

\rm \: \vec{AB}  \times \vec{AC}  \\

\rm \: \:  \: =  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\ - 1&1& - 1\\2&1&1\end{array}\right | \end{gathered} \\

\rm \:  =  \: \hat{i} (1 + 1) - \hat{j} ( - 1 + 2) + \hat{k} ( - 1 - 2) \\

\rm \:  =  \: 2\hat{i}  - \hat{j} -  3\hat{k}  \\

So,

\rm\implies \:\vec{AB}  \times \vec{AC}   =  \: 2\hat{i}  - \hat{j} -  3\hat{k}  \\

Now,

\rm \:  |\vec{AB}  \times \vec{AC} |  \\

\rm \:  =  \:  \sqrt{ {(2)}^{2}  +  {( - 1)}^{2}  +  {( - 3)}^{2} }  \\

\rm \:  =  \:  \sqrt{4 + 1 + 9}  \\

\rm \:  =  \:  \sqrt{14}  \\

So,

\rm\implies \: |\vec{AB}  \times \vec{AC} |  =  \sqrt{14}  \\

So,

\rm \: Area_{(\triangle\:ABC)} = \dfrac{1}{2} |\vec{AB}  \times \vec{AC} |  \\

\bf\implies \:Area_{(\triangle\:ABC)} = \dfrac{ \sqrt{14} }{2} \: sq. \: units \\

Similar questions