Math, asked by new30, 1 year ago

find the area of triangle of vertices (a,a),(a+1,a+1),(a+2,a)

Answers

Answered by lyrics12345
0

Answer:


Step-by-step explanation:

Step  1  :

           1

Simplify   —

           a

Equation at the end of step  1  :

       1     1    

 (a +  —) ÷ (— -  a)

       a     a    

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a whole from a fraction


Rewrite the whole as a fraction using  a  as the denominator :


        a     a • a

   a =  —  =  —————

        1       a  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole


Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator


Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator


Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:


1 - (a • a)     1 - a2

———————————  =  ——————

     a            a  

Equation at the end of step  2  :

       1    (1 - a2)

 (a +  —) ÷ ————————

       a       a    

Step  3  :

           1

Simplify   —

           a

Equation at the end of step  3  :

       1    (1 - a2)

 (a +  —) ÷ ————————

       a       a    

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Adding a fraction to a whole


Rewrite the whole as a fraction using  a  as the denominator :


         a     a • a

    a =  —  =  —————

         1       a  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions


a • a + 1     a2 + 1

—————————  =  ——————

    a           a  

Equation at the end of step  4  :

 (a2 + 1)   (1 - a2)

 ———————— ÷ ————————

    a          a    

Step  5  :

        a2+1      1-a2

Divide  ————  by  ————

         a         a  


5.1    Dividing fractions


To divide fractions, write the divison as multiplication by the reciprocal of the divisor :


a2 + 1     1 - a2       a2 + 1         a  

——————  ÷  ——————   =   ——————  •  ————————

 a          a            a        (1 - a2)


Polynomial Roots Calculator :

5.2    Find roots (zeroes) of :       F(a) = a2 + 1

Polynomial Roots Calculator is a set of methods aimed at finding values of  a  for which   F(a)=0  


Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  a  which can be expressed as the quotient of two integers


The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient


In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.


The factor(s) are:


of the Leading Coefficient :  1

of the Trailing Constant :  1


Let us test ....


  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        2.00    

     1       1        1.00        2.00    


Polynomial Roots Calculator found no rational roots


Trying to factor as a Difference of Squares :

5.3      Factoring:  1 - a2


Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)


Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2


Note :  AB = BA is the commutative property of multiplication.


Note :  - AB + AB equals zero and is therefore eliminated from the expression.


Check :  1  is the square of  1

Check :  a2  is the square of  a1


Factorization is :       (1 + a)  •  (1 - a)


Final result :

       a2 + 1    

 —————————————————

 (a + 1) • (1 - a)


Processing ends successfully


Subscribe to our mailing list

Email Address




Terms and Topics

No Topics Found

Related Links



Similar questions