Find the area of triangle PQR formed by the points P(-5,7), Q(-4,-5) and R(4,5).
Answers
Answered by
31
Given:
✰ Point P( -5, 7 )
✰ Point Q( -4, -5 )
✰ Point R ( 4, 5 )
To find:
✠ The area of triangle PQR
Solution:
Consider,
In point P( -5, 7 )
✫ -5 = x₁
✫ 7 = y₁
In point Q( -4, -5 )
✫ -4 = x₂
✫ -5 = y₂
In point R ( 4, 5 )
✫ 4 = x₃
✫ 5 = y₃
Now,
Area of ∆PQR = 1/2[x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]
- Area of ∆PQR = 1/2 [ -5( -5 - 5 ) -4( 5 - 7 ) +4( 7 + 5 )]
- Area of ∆PQR = 1/2 [ ( 25 + 25 ) + ( - 20 + 28 ) + ( 28 + 20 ) ]
- Area of ∆PQR = 1/2 [ 50 + 8 + 48 ]
- Area of ∆PQR = 1/2 [ 58 + 48 ]
- Area of ∆PQR = 1/2 [ 58 + 48 ]
- Area of ∆PQR = 1/2 [ 106 ]
- Area of ∆PQR = 1/2 × 106
- Area of ∆PQR = 53 sq.unit
∴ The ∆ of triangle PQR = 53 sq.unit
Signs:
- + + = +
- - - = +
- - + = -
- + - = -
══════════════════════
Attachments:
Similar questions