Math, asked by gupthsriram2005, 6 months ago

Find the area of triangle sides of which are 122m, 22m and 120m.

Answers

Answered by adhirajsinghbrar2005
2

Answer:

HINT: Use Heron's Formula

Step-by-step explanation:

If you don't know Heron's formula ,here it is in brief :

Heron’s formula, formula credited to Heron of Alexandria (c. 62 CE) for finding the area of a triangle in terms of the lengths of its sides. In symbols, if a, b, and c are the lengths of the sides:

Area = \sqrt{s(s - a)(s - b)(s - c)}

where s is half the perimeter, or (a + b + c)/2.

Answered by Anonymous
14

Given :-

  • Sides of traingle are 122 m, 22 m and 120 m.

To Find :-

  • The area of traingle = ?

Solution :-

\frak {\red{Here}}\begin{cases} \sf{\pink{a = 122  \: m}}\\ \sf{\gray{b =22  \: m}}\\ \sf{\orange{c = 120  \: m}}\end{cases} \\

Semi Perimeter of traingle :

\dashrightarrow\:\: \textsf{Semi Perimeter (s)=  $\dfrac{ \text{a + b + c}}{ \text{2}}$ } \\  \\

\dashrightarrow\:\: \textsf{Semi Perimeter (s)=  $\dfrac{ \text{122+ 22+ 120}}{ \text2}$ } \\  \\

\dashrightarrow\:\: \textsf{Semi Perimeter (s)=  $\dfrac{ \text{264}}{ \text2}$ } \\  \\

\dashrightarrow\:\: \textsf{Semi Perimeter (s)} = \frak{132  \: cm } \\  \\

Now, let's calculate the the area of ∆ by using heron's formula :

:\implies \sf Area_{\tiny \triangle} =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

:\implies \sf Area_{\tiny \triangle} =  \sqrt{132(132 - 122)(132- 22)(132 - 120)}  \\  \\  \\

:\implies \sf Area_{\tiny \triangle} =  \sqrt{132 \times 10 \times 110  \times 12}  \\  \\  \\

:\implies \sf Area_{\tiny \triangle} =  \sqrt{11 \times 12 \times 10 \times 11 \times 10 \times 12}  \\  \\  \\

:\implies \sf Area_{\tiny \triangle} =  11 \times 12 \times 10  \\  \\  \\

:\implies \underline{ \boxed {\frak{ Area_{\tiny \triangle} =  1320 \:  {cm}^{2}}}}   \\  \\  \\

Therefore,Area of is 1320 cm².

Similar questions