Math, asked by manyank789, 1 year ago

find the area of triangle, the coordinates of whose vertices are (3,2), (5,7) and (-5,-7)

Answers

Answered by Cupcake03
1

Let,

(3,2) = (x1,y1)

(5,7) = (x2,y2)

(-5,-7) = (x3,y3)

Now,

Area of triangle = 1/2 [x1 (y2-y3) + x2 (y3-y1) + x3 (y1-y2)]

= 1/2 [3 (7-(-7)) + 5 ((-5)-2) + (-5) (2-7)

= 1/2 [3 (14) + 5 (-7) - 5 (-5)]

= 1/2 [ 42 - 35 + 25]

= 1/2 [32]

= 32/2

= 16 sq. units

I hope this helped you!


manyank789: the answer is 11 square units
Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=11\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (3,2) } \\  \\ \tt{: \implies Coordinate \: of \: B = (5,7) } \\  \\ \tt{: \implies Coordinate \: of \: C = (-5,-7) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |3(7-(- 7)) + 5(-7 - 2) - 5(2 - 7)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |3 \times 14 +  5\times -9 -5 \times -5 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |42 - 45 +25| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 22} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =11 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions