Math, asked by tcbabuthankappan, 9 months ago

Find the area of triangle, two of its sides are 16 and 22 cm and the perimeter is 64 cm.

Answers

Answered by manpreetsingh5648659
0

Answer:

why we find

find yourself

Answered by TheProphet
1

Solution :

\underline{\bf{Given\::}}}}

  • Two sides of a triangle are 16 cm & 22 cm .
  • Perimeter of triangle, (P) = 64 cm

\underline{\bf{Explanation\::}}}}

Diagram :

\setlength{\unitlength}{0.8cm}\begin{picture}(6,5)\thicklines\put(1,0.5){\line(2,1){3}}\put(4,2){\line(-2,1){2}}\put(2,3){\line(-2,-5){1}}\put(0.7,0.3){$\bf A$}\put(4.05,1.9){$\bf B$}\put(1.7,2.95){$\bf C$}\put(3.1,2.5){$\sf r\:cm$}\put(1.3,1.7){$\sf \:\:\:22\:cm$}\put(2.5,1.05){$\sf16\:cm$}\end{picture}

Let the third side of triangle be r cm;

As we know that perimeter of triangle :

\boxed{\bf{Perimeter=Side+Side+Side}}}

\longrightarrow\sf{64=16+22+r}\\\\\longrightarrow\sf{64=38+r}\\\\\longrightarrow\sf{r=64-38}\\\\\longrightarrow\bf{r=26\:cm}

Now;

\underline{\boldsymbol{By\:using\:Heron's\:formula\::}}}

  • A = 16 cm
  • B = 22 cm
  • C = 26 cm

\longrightarrow\sf{Semi-Perimeter=\dfrac{Side+Side+Side}{2} }\\\\\\\longrightarrow\sf{Semi-Perimeter=\dfrac{A+B+C}{2} }\\\\\\\longrightarrow\sf{Semi-Perimeter=\dfrac{16+22+26}{2} }\\\\\\\longrightarrow\sf{Semi-Perimeter=\cancel{\dfrac{64}{2} }}\\\\\\\longrightarrow\bf{Semi-Perimeter=32\:cm}

&

\boxed{\bf{Area\:of\:\triangle = s\sqrt{(s-a)(s-b)(s-c)} }}}

\mapsto\sf{Area\:of\:\triangle = \sqrt{32(32-16)(32-22)(32-26)} }\\\\\mapsto\sf{Area\:of\:\triangle =\sqrt{32\times 16 \times 10\times 6} }\\\\\mapsto\sf{Area\:of\:\triangle =\sqrt{2\times 2\times 2\times 2\times 2\times 2\times 2\times 2 \times 2\times 2\times 5 \times 2\times 3} }\\\\\mapsto\sf{Area\:of\:\triangle =2 \times 2\times 2\times 2\times 2 \sqrt{30} }\\\\\mapsto\bf{Area\:of\:\triangle =32\sqrt{30} \:cm^{2} }

Thus;

The area of triangle will be 32√30 cm² .

Similar questions