Math, asked by bhatjohn2025, 1 year ago

Find the area of triangle using Heron's formula the sides are 8cm,6cm,10cm,

Answers

Answered by grvrshekhar24
5
s=a+b+c/2
s=8+6+10/2
s=12
area=√s(s-a)(s-b)(s-c)
=√12*(12-8)(12-6)(12-10)
=√12*4*6*2
=√24*24
=24cm^2
Answered by BrainlyConqueror0901
12

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=24\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 8 cm,6 cm,10 cm} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{8+ 6+ 10}{2}  \\  \\  : \implies s =  \frac{24}{2}  \\  \\  \green{ : \implies s = 12} \\  \\   \circ\:  \bold{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{12(12 - 8)(12-6)(12 - 10)}  \\  \\  :  \implies \text{Area \: of \: triangle =}\sqrt{12 \times 4 \times 6\times 2}   \\  \\ :  \implies \text{Area \: of \: triangle =} \sqrt{576}   \\  \\  :  \implies \text{Area \: of \: triangle =}24 \: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 24 {cm}}^{2} }

Similar questions