Math, asked by saijatin22, 1 month ago

find the area of triangle using herons formula with measurement 9,9,14

Answers

Answered by uroojilahi
0

Answer : A= hbh

2

b : base

hb : height

Answered by MrImpeccable
19

ANSWER:

Given:

  • Length of sides of triangle = 9units, 9units and 14units.

To Find:

  • Area of the triangle.

Diagram:

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\put(1.7,1.5){$\bf 9$}\put(4.1,1.5){$\bf 9$}\put(3,-0.3){$\bf 14$}\end{picture}

Solution:

Let the sides of the triangle be a, b and c.

We know that, by Heron's Formula,

\hookrightarrow\sf Area=\sqrt{s(s-a)(s-b)(s-c)\,}

Here,

⇒ a = 9 units, b = 9 units, c = 14 units and s = semi-perimeter

\implies\sf s=\dfrac{Perimeter}{2}=\dfrac{a+b+c}{2}

\implies\sf s=\dfrac{9+9+14}{2}

\implies\sf s=\dfrac{32\!\!\!\!\!/^{\:\:16}}{2\!\!\!/}

\implies\sf s=16

So, the area of the triangle is,

\implies\sf Area=\sqrt{s(s-a)(s-b)(s-c)\,}

\implies\sf Area=\sqrt{16(16-9)(16-9)(16-14)\,}

\implies\sf Area=\sqrt{16\times7\times7\times2\,}

\implies\bf Area=28\sqrt{2}

Therefore the Area of the triangle is 28√2 square units.

Formula Used:

\hookrightarrow\sf Area=\sqrt{s(s-a)(s-b)(s-c)\,}

Similar questions