Math, asked by mohiksinha132, 6 months ago

Find the area of triangle whose side are 3m,4m,5m​

Answers

Answered by Anonymous
35

Given:-

  • Side of a triangle are 3 m, 4 m and 5 m.

To find:-

  • Area of the triangle.

Solution:-

Here,

  • s = \bf{\dfrac{3 + 4 + 5}{2}}

  • s = \bf{\dfrac{12}{2}}

  • s = \bf{6}

Using Heron's Formula:-

\star{\boxed{\sf{\orange{Area = \sqrt{[s(s - a)(s - b)(s - c)]}}}}}

\tt\longmapsto{Area = \sqrt{[6(6 - 3)(6 - 4)(6 - 5)]}}

\tt\longmapsto{Area = \sqrt{[6 \times 3 \times 2 \times 1]}}

\tt\longmapsto{Area = \sqrt{36}}

\tt\longmapsto{\boxed{\red{Area = 6 m^2}}}

Hence,

  • the area of triangle is 6 m².
Answered by Anonymous
5

\bf  {\underline {\underline{✤QƲЄƧƬƖƠƝ}}}

Find the area of triangle whose side are 3m,4m,5m.

\bf  {\underline {\underline{✤ ƛƝƧƜЄƦ}}}

➞Area of Triangle is 6m²

\bf  {\underline {\underline{✤ ƓƖƔЄƝ}}}

  • Sides of triangle 3m, 4m and 5m

\bf  {\underline {\underline{✤ ƬƠ  \:  \:  ƇƛLƇƲLƛƬЄ}}}

  • Area of Triangle

\bf {\underline{\underline{✤ƇƠƝƇЄƤƬ}}}

In this question, Sides of triangle are given So, we will find area of Triangle by using Heron's Formula

\bf  {\underline {\underline{✤ ƑƠƦMƲLƛ  \:  \: ƬƠ  \: ƁЄ \:  \:  ƲƧЄƊ}}}

Heron's Formula =

  \bf\sqrt{s(s - a)(s - b)(s - c)}

\bf  {\underline {\underline{✤ SƠԼƲƬƖƠƝ}}}

Semi Perimeter (s) = 3+4+5/2 = 12/2 = 6m

Let a be 3m, b be 4m and c be 5m

Area of Triangle =

 \bf\sqrt{s(s - a)(s - b)(s - c)}

 \bf \sqrt{6(6 - 3)(6 - 4)(6 - 5)}

 \bf \sqrt{6 \times 3 \times 2 \times 1}

 \bf \sqrt{36}

  \bf {6m}^{2}

Therefore, Area of triangle is 6m².

 \bf \pink{hope \: } \purple{it \: } \blue{helps \: } \red{uh..}

Similar questions