Math, asked by sivaprakash7540, 1 year ago

Find the area of triangle whose side are 91m 98 m and 105m.also find the height of corresponding to the longest side

Answers

Answered by Noah11
22
\textbf{Answer:}

We will use Heron's Formula here,

 \sqrt{s(s - a)(s - b)(s - c)}

S=semi perimeter

s = \frac{91 + 98 + 105}{2} = 147

area = \sqrt{147(56)(49)(42)}

=4116m²

Height corresponding to longest side

▶️Area of the triangle-\boxed{1/2 x base x height }

4116m²=1/2 x105 x height

h=4116x2/105

\boxed{h=78.4m}

\textbf{Hope it helps you! }

Anonymous: Bro u have done some mistake
Anonymous: in finding the height
Noah11: thanks
Answered by Anonymous
18

 \large \bf{ \mathfrak{ HELLO \:  \:  FRIENDS!! }}

 \large{ \mathfrak{Here  \: is   \: y our  \: answer↓}}


⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇



 \huge \bf \sf{Given:-)}


↪➡ Sides of triangle are 91m , 98m and 105m.


 \huge \bf \sf{To \:  Find:-)}

↪➡ Area of triangle.

↪➡ And height of triangle correspondence to the longest side.


 \bf{By  \: using  \: Heron's \:  formula:-)}

 \boxed{ =  >  \sqrt{s(s - a)(s - b)(s - c)} .}

→ Here a = 91m, b = 98m , and c = 105m.


 \bf =  > s =  \frac{a + b + c}{2} .


 \bf =  > s =  \frac{91 + 98 + 105}{2} .


 \bf =  > s =  \frac{294}{2} .


 \huge \boxed{ =  > s = 147.}


 \bf =  > area  \: of \:  triangle =  \sqrt{s(s - a)(s - b)(s - c)} .


 \bf =  \sqrt{147(147 - 91)(147 - 98)(147 - 105).}


 \bf =  \sqrt{147 \times 56 \times 49 \times 42} .


 \bf =  \sqrt{3 \times 7 \times 7 \times 2 \times 2 \times 2 \times 7 \times 7 \times 2 \times 3 \times 7} .


 \bf = 3 \times 2 \times 2 \times 7 \times 7 \times 7.



 \huge \bf \boxed { = 4116 {m}^{2} .}

▶ We know that :-)

 \boxed{area \:  of  \: triangle =  \frac{1}{2} \:  base \times height.}


 \bf =  > 4116 =  \frac{1}{2}  \times 105 \times h.
[ note:- longest base is 105 m.]


 \bf =  > h =  \frac{4116 \times 2}{105} .


 \huge \bf \boxed{ =  > h = 78.4m.}


✅✅ Hence, all are founded ✔✔.



 \huge \boxed{ \mathfrak{THANKS}}



 \huge \bf \underline{ \mathfrak{Hope  \: it  \: is  \: helpful \:  for  \: you}}


Anonymous: perfecf
Anonymous: perfect*
Anonymous: thanks
fanbruhh: good
Similar questions