Math, asked by mahekmane, 7 months ago

Find the area of triangle whose side is 42m,56m,and 70m​

Answers

Answered by Blossomfairy
38

Given :

  • Sides of a triangle is 42 m,56 m, and 70 m.

To find :

  • Area of triangle.

According to the question,

We will use Heron's formula,

\bf  : \implies{ \dfrac{a + b + c}{2} } \\  \\  : \implies \bf{ \dfrac{4 2 + 56 + 70}{2} } \\  \\   :  \implies \bf{ \dfrac{168}{2} } = 84 \: m

 \bf  : \implies{ \sqrt{s(s - a)(s - b)(s - c)} }

\\

\bf  : \implies{ \sqrt{84(84 - 42)(84 - 56)(84 -70)} }

\\

:  \implies \bf{ \sqrt{84(42)(28)(14)} }

 \\

 : \implies \bf{ \sqrt{14  \times 2 \times 3 \times 14 \times 3 \times 14 \times 2 \times 14} }

\\

 : \implies \bf{14 \times 14 \times 2 \times 3}

  \\

 :  \implies{ \underline{ \boxed{ \bf \green{1176 \:  {m}^{2} }}}}

Answered by Anonymous
26

Sides of the triangle = 42 m, 56 m, 70 m

∴ Semi-perimeter (s) = (a + b + c)/2

⇒s = [(42 + 56 + 70) m]/2

⇒ s = 168/2 m = 84 m

We know,

Area of triangle = √[s(s - a)(s - b)(s - c)]

∴ Area = √[84(84 - 42)(84 - 56)(84 - 70)] m²

⇒ Area = √(84 × 42 × 28 × 14)

= √(1176)² = 1176 cm²

Similar questions