Math, asked by jagrit22, 10 months ago

Find the area of triangle whose sides are 17cm ,25cm 26cm​

Answers

Answered by harendrachoubay
58

The area of the triangle is "204 cm^{2}".

Step-by-step explanation:

Here, a = 17 cm, b = 25 cm and c = 26 cm

∴ Semiperimetre = \dfrac{a + b + c}{2}

=  \dfrac{17 + 25 + 26}{2} cm

=  \dfrac{68}{2} cm

= 34 cm

Area of triangle(Hero's formua) = \sqrt{s(s - a)(s - b)(s - c)}

= \sqrt{34(34 - 17)(34 - 25)(34 - 26)}  cm^{2}

= \sqrt{34(17)(9)(8)}  cm^{2}

= 17 × 3 × 4 cm^{2}

= 204 cm^{2}

Hence, the area of the triangle is "204 cm^{2}".

Answered by aditriagrawal73
8

The area of the triangle is "204 cm^{2}cm2 ".

Step-by-step explanation

Here, a = 17 cm, b = 25 cm and c = 26

∴ Semiperimetre = \dfrac{a + b + c}{2}2a+b+c

=  \dfrac{17 + 25 + 26}{2}217+25+26 c

=  \dfrac{68}{2}268 cm

= 34 cm

Area of triangle(Hero's formua) = \sqrt{s(s - a)(s - b)(s - c)}s(s−a)(s−b)(s−c)

= \sqrt{34(34 - 17)(34 - 25)(34 - 26)}34(34−17)(34−25)(34−26) cm^{2}cm2

= \sqrt{34(17)(9)(8)}34(17)(9)(8) cm^{2}cm2

= 17 × 3 × 4 cm^{2}cm2

= 204 cm^{2}cm2

Hence, the area of the triangle is "204 cm^{2}cm2 ".

Similar questions