Math, asked by jordan9715, 1 year ago

Find the area of triangle whose sides are 48cm 52cm and 20cm


niraj1222002: you can solve it by using heron's formula.

Answers

Answered by akhandpandey37
2

Root s(s-a)(s-b)(s-c)

Where s=a+b+c/2

Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=480\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =48 cm,52 cm,20 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{48+52+20}{2} \\ \\ : \implies s = \frac{120}{2} \\ \\ \green{ : \implies s =60 } \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{60(60- 48)(60-52)(60- 20)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{60\times 12\times8\times 40} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{230400} \\ \\ : \implies \text{Area \: of \: triangle =}480\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle =480\: {cm}}^{2} }

Similar questions