Math, asked by tena42, 1 year ago

find the area of triangle whose sides are 4om,24m,32m by herons formula

Answers

Answered by umakarri1980
1

answer fo your question is

Attachments:
Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=384\:m}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle = 40 m,24 m,32 m} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{40+ 24+ 32}{2} \\ \\ : \implies s = \frac{96}{2} \\ \\ \green{ : \implies s = 48} \\ \\ \circ\: \bold{area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{48(48- 40)(48-24)(48- 32)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{48 \times 8 \times 24\times 16} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{1467456} \\ \\ : \implies \text{Area \: of \: triangle =}384 \: m^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 384 {m}}^{2} }

Similar questions