Math, asked by krishnabhandari6397, 4 months ago

find the area of triangle whose sides are 5cm, 12cm and 13cm also find the altitude corresponding to the longest side​

Answers

Answered by Anonymous
1

Answer:

Given, sides of triangle 5 cm, 12 cm, 13 cm.

Now semi perimeter, s= =

2

sum of the sides of triangle

=

2

5+12+13

=15 cm

Using heron's formula, Area of triangle=

s(s−a)(s−b)(s−c)

=

15(15−5)(15−12)(15−13)

=

15×10×3×2

=30cm

2

Using altitude, area of triangle =

2

1

× base × altitude =30cm

2

=

2

1

×13× altitude =30

= altitude =

13

30×2

=4.61 cm

So, altitude corresponding to largest side is 4.61 cm.

A

Answered by vedika200966
1

Step-by-step explanation:

Now semi perimeter, s=

semi perimeter, s= 2

semi perimeter, s= 2sum of the sides of triangle

=

= 2

= 25+12+13

= 25+12+13

= 25+12+13 =15 cm

= 25+12+13 =15 cmUsing heron's formula, Area of triangle=

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c)

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c)

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c)

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) =

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13)

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13)

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13)

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) =

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2 Using altitude, area of triangle =

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2 Using altitude, area of triangle = 2

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2 Using altitude, area of triangle = 21

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2 Using altitude, area of triangle = 21

= 25+12+13 =15 cmUsing heron's formula, Area of triangle= s(s−a)(s−b)(s−c) = 15(15−5)(15−12)(15−13) = 15×10×3×2 =30cm 2 Using altitude, area of triangle = 21 × base × altitude =30cm 2

=

= 2

= 21

= 21

= 21 ×13× altitude =30

= 21 ×13× altitude =30= altitude =

= 21 ×13× altitude =30= altitude = 13

= 21 ×13× altitude =30= altitude = 1330×2

= 21 ×13× altitude =30= altitude = 1330×2

= 21 ×13× altitude =30= altitude = 1330×2 =4.61 cm

= 21 ×13× altitude =30= altitude = 1330×2 =4.61 cmSo, altitude corresponding to largest side is 4.61 cm.

Similar questions