Math, asked by ranvirtyagi09, 9 months ago

Find the area of triangle whose sides are 7cm ,4cm,5cm

Answers

Answered by coolbrainlygirl100
2

Answer:

The answer in the attachment of this answer⬆️⬆️⬆️⬆️.............☺

Step-by-step explanation:

{\huge{\overbrace{\underbrace{\purple{❤❤}}}}}

Attachments:
Answered by MisterIncredible
69

Given :-

Measurements of the triangle are 7cm , 4 cm and 5 cm

Required to find :-

Area of the triangle ?

Formulae used :-

\rm{\bf{s = \dfrac{ a + b + c }{ 2 } }}

\tt{\bf{ Area = \sqrt{ s ( s - a )( s - b )( s - c ) }}}

Solution :-

Given information :-

Measurements of the triangle are ; 7cm , 4cm & 5 cm

We need to find the area of the triangle .

In order to find it's area we should use ; Herons formula

So,

Let's find the semi - perimeter of the given triangle .

Using the formula ;

\rm{\bf{s = \dfrac{ a + b + c }{ 2 } }}

\rm{\bf{s = \dfrac{  7 + 4 + 5 }{ 2 } }}

\rm{\bf{s = \dfrac{ 16 }{ 2 } }}

\rm{\bf{s = 8 }}

Hence,

Semi - perimeter of the ∆ is 8

Using Heron's formula ;

\tt{\bf{ Area = \sqrt{ s ( s - a )( s - b )( s - c ) }}}

Here ,

s = semi - perimeter

a , b , c = Three sides of the triangle

Substituting the values ;

\tt{\bf{ Area = \sqrt{ 8 ( 8 - 7  )( 8 - 4 )( 8 - 5 ) }}}

\tt{\bf{ Area = \sqrt{ 8 ( 1 )( 4 )( 3 ) }}}

\tt{\bf{ Area = \sqrt{ 8 \times 12  }}}

\tt{\bf{ Area = \sqrt{ 96 }}}

\tt{\bf{ Area = \sqrt{ 16 \times 6 }}}

\tt{\bf{ Area = \sqrt{ 16 } \times \sqrt{6} }}

\tt{\bf{ Area = 4 \sqrt{ 6 }}}

\tt{ ( \; \because \;  \sqrt{6} \; = 2.44 )  }

This implies,

\tt{\bf{ Area = 4 \times 2.44 }}

\tt{\bf{ Area =  9.76 \; {cm}^{2} }}

Therefore,

☞ Area of the ∆ = 9.76 cm²

Diagram :-

 \setlength{\unitlength}{20} \begin{picture}(0,0) \put(1,1){\line(1,0){5}} \put(1,1){\line(1,1){2.5}}\put(6,1){\line( -1, 1){2.5}}\put(3,0.5){ $ \tt 7 \: cm  $ }\put(5,2){ $ \tt 4 \: cm $ }\put(1,2.3){ $ \tt 5 \: cm $ }\put(8,1){ $ \displaystyle{ \sqrt{s(s - a)(s - b)(s - c)} } $ }\put(8,2){ $ \rm{Herons  \: formula} $ }\put(8,1){ $ \displaystyle{ \sqrt{s(s - a)(s - b)(s - c)} } $ }\put(12,2.5){ $  \boxed{\displaystyle{s =  \dfrac{a + b + c}{2}  }} $ }\end{picture}}


BrainlyConqueror0901: excellent : )
Similar questions