Math, asked by Himans5154, 11 months ago

Find the area of triangle whose sides are 8cm,11cm,12cm,using herons formula

Answers

Answered by imDrDrunkenstein
1

Answer:

it is approximately 43cm.

Step-by-step explanation:

follow attachment

Attachments:
Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=44.3\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle = 8 cm,11 cm,12 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{8+ 11+ 12}{2} \\ \\ : \implies s = \frac{31}{2} \\ \\ \green{ : \implies s = 15.6} \\ \\ \circ\: \bold{area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{15.6(15.6- 8)(15.6-11)(15.6- 12)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{15.6 \times 7.6 \times 4.6\times 3.6} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{1963.3536} \\ \\ : \implies \text{Area \: of \: triangle =}44.3 \: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 44.3 {cm}}^{2} }

Similar questions