Math, asked by zaaramalik1642, 7 months ago

find the area of triangle whose sides are in ratio 4:5:6 and perimeter is 300 ..pls ans it fast​

Answers

Answered by SpaceWalker17
2

ɢɪᴠᴇɴ

  • Perimeter of triangle = 300
  • Sides = 4x, 5x and 6x

ᴛᴏ ғɪɴᴅ

  • Area of triangle.

ʟᴇᴛ, ᴛʜᴇ ʀᴀᴛɪᴏs ʙᴇ ᴛʜᴇ ᴍᴜʟᴛɪᴘʟᴇ ᴏғ x.

sᴏ, ᴅɪᴍᴇɴsɪᴏɴs ᴡɪʟʟ ʙᴇ

  • 4x , 5x and 6 x

FORMULA

1. \bold{Perimeter =side+side+side}

2.\bold{Area =\sqrt{s(s-a)(s-b)(s-c)}}

NOW

\bold{Perimeter =side+side+side}

=> 300 = 4x +5x +6x

=> 300 = 15x

=>\frac{300}{15} =x

=> 20 = x

ᴅɪᴍᴇɴsɪᴏɴs

  • 4x = 4×20 =80 __(a)
  • 5x = 5×20 =100 __(b)
  • 6x = 6×20 = 120 __(c)

ɴᴏᴡ

\large\bold{s = \frac{a+b+c}{2}}

\large\bold{s = \frac{80+100+120}{2}}

\large\bold{s = \frac{300}{2}}

\large\bold{s = 150}

ʙʏ ᴜsɪɴɢ ʜᴇʀᴏɴ's ғᴏʀᴍᴜʟᴀ

\bold{Area =\sqrt{s(s-a)(s-b)(s-c)}}

A = \sqrt{s(s-a)(s-b)(s-c)}

A =\sqrt{150(150-80)(150-100)(150-120)}

A =\sqrt{150×70×50×30}

A =\sqrt{15750000}

A =3968.6

ᴛʜᴇʀᴇғᴏʀᴇ

AREA = 3968.6

HOPE THIS ANSWER WILL HELP YOU!!

Answered by EliteSoul
10

Given :

  • Sides are in ratio 4:5:6
  • Perimeter is 300

To find :

  • Area of triangIe

SoLution :

As sides are in ratio of 4:5:6 .

Let the sides be 4x, 5x, 6x units.

Now we know that :

⇒ Perimeter of Δ = Sum of 3 sides of Δ

ATQ,

⇒ 4x + 5x + 6x = 300

⇒ 15x = 300

⇒ x = 300/15

⇒ x = 20 units.

Now finding sides of Δ :

  1. 4x = 4 × 20 =  80 units.
  2. 5x = 5 × 20 = 100 units.
  3. 6x = 6 × 20 = 120 units.

Now using Heron's formuLa :

⇒ Area of Δ = √[s(s - a)(s - b)(s - c)]

Where, s = semi perimeter

⇒ s = 300/2

⇒ s = 150 units.

Substituting  :

⇒ Area of Δ = √[150(150 - 80)(150 - 100)(150 - 120)]

⇒ Area of Δ = √[150 × 70 × 50 × 30]

⇒ Area of Δ = √15750000

⇒ Area of Δ = 3968.63 unit²

∴ Area of Δ = 3968.63 unit²


Anonymous: Nice :)
EliteSoul: Thanku ❤
Similar questions